Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584261

RESUMO

The challenge of managing aquatic connectivity in a changing climate is exacerbated in the presence of additional anthropogenic stressors, social factors, and economic drivers. Here we discuss these issues in the context of structural and functional connectivity for aquatic biodiversity, specifically fish, in both the freshwater and marine realms. We posit that adaptive management strategies that consider shifting baselines and the socio-ecological implications of climate change will be required to achieve management objectives. The role of renewable energy expansion, particularly hydropower, is critically examined for its impact on connectivity. We advocate for strategic spatial planning that incorporates nature-positive solutions, ensuring climate mitigation efforts are harmonized with biodiversity conservation. We underscore the urgency of integrating robust scientific modelling with stakeholder values to define clear, adaptive management objectives. Finally, we call for innovative monitoring and predictive decision-making tools to navigate the uncertainties inherent in a changing climate, with the goal of ensuring the resilience and sustainability of aquatic ecosystems.

2.
Nat Commun ; 14(1): 8309, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097543

RESUMO

Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.


Assuntos
Salmonidae , Animais , Temperatura , Ecossistema , Aquecimento Global , Metabolismo Energético , Aclimatação
3.
Sci Total Environ ; 577: 308-318, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802888

RESUMO

We modelled three macroinvertebrate (IASPT, EPT number of families and LIFE) and one fish (percentage of salmonid biomass) biotic indices to river networks draining a large region (110,000km2) placed in Northern and Eastern Spain. Models were developed using Random Forest and 26 predictor variables (19 predictors to model macroinvertebrate indices and 22 predictors to model the fish index). Predictor variables were related with different environmental characteristics (water quality, physical habitat characteristics, hydrology, topography, geology and human pressures). The importance and effect of predictors on the 4 biotic indices was evaluated with the IncNodePurity index and partial dependence plots, respectively. Results indicated that the spatial variability of macroinvertebrate and fish indices were mostly dependent on the same environmental variables. They decreased in river reaches affected by high mean annual nitrate concentration (>4mg/l) and temperature (>12°C), with low flow water velocity (<0.4m/s) and aquatic plant communities being dominated by macrophytes. These indices were higher in the Atlantic region than in the Mediterranean. This study provides a continuous image of river biological communities used as indicators, which turns very useful to identify the main sources of change in the ecological status of water bodies and assist both, the integrated catchment management and the identification of river reaches for recovery.


Assuntos
Ecossistema , Peixes , Invertebrados , Rios , Animais , Monitoramento Ambiental , Modelos Biológicos , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...